

The Winning Strategy for the Sparse Ruler Game.

PRESENTER: Adir Ali Yerima
EMAIL: aaliyerima@oglethorpe.edu

BACKGROUND:

- The Sparse Ruler is an impartial combinatorial game meaning the available moves depend only on the position (ruler size), not on which player is moving
- The goal of the study was to analyze optimal winning strategy for this game
- The Sprague-Grundy Theorem was used to classify every possible position a player might have as either P-positions (losing) or N-position (winning).

METHODS

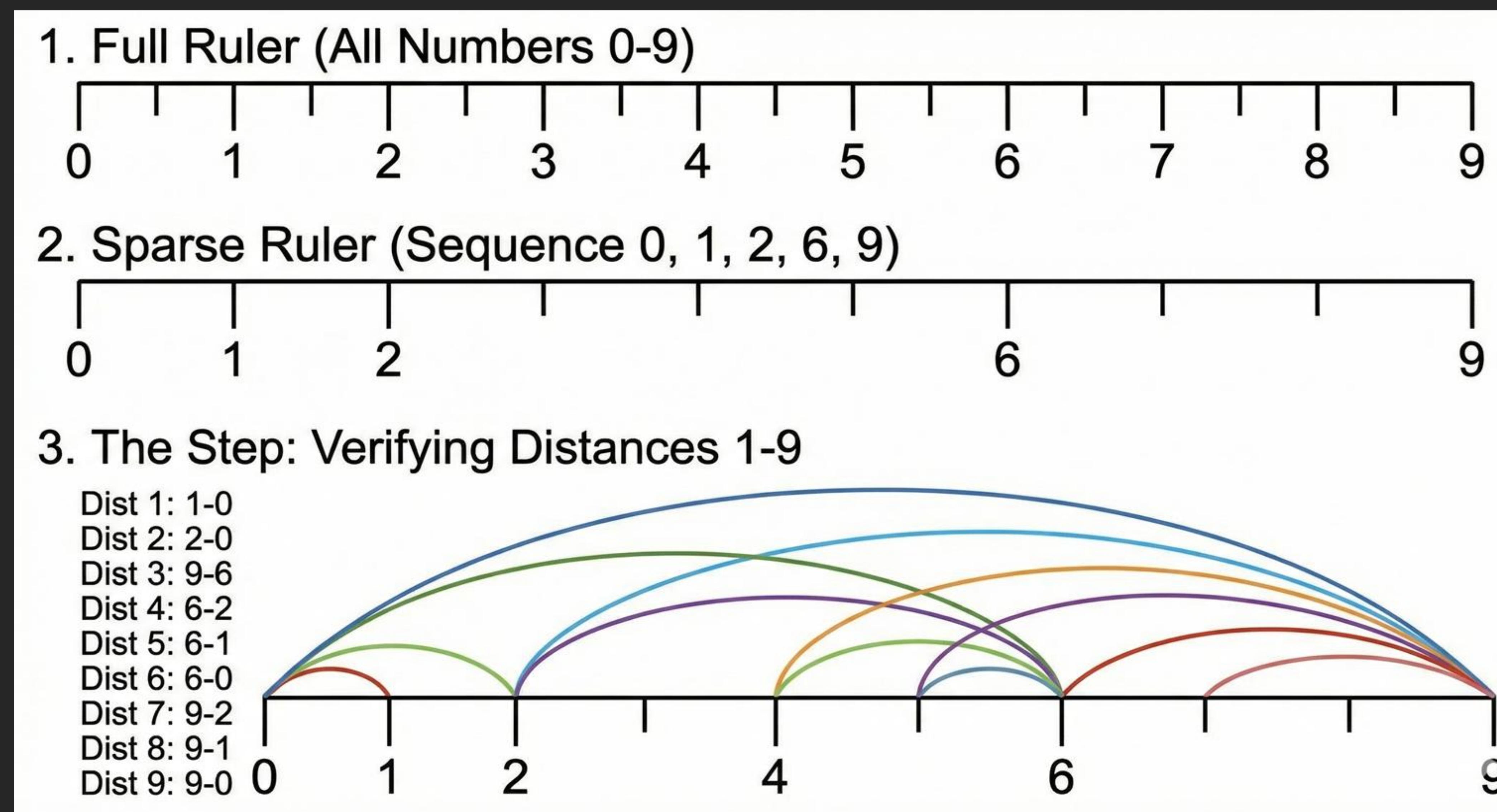
- The Sparse Ruler is played by alternately adding integers marks to a ruler, so all distances stay measurable. The player who makes the last move wins.
- A custom Python script was used to evaluate every possible game state of a ruler sequence and determine its starting P/N position.
- The program classified a state as N if it has at least one legal move that leads to a P-position
- Otherwise, it was classified as P if all legal moves from the current position led to N-positions
- This classification was confirmed and extended by computing the Grundy value $G(n)$ using the MEX rule for ruler sizes up to 20, where $G(n) = 0$ is the P-position

RESULTS

- For ruler sizes $n = 1$ to $n = 7$, the Grundy values follow an irregular pattern within $\{0, 1, 2\}$.
- For sizes $n \geq 8$, the values settle into a stable alternation: odd n yield 0 (P-positions) and even n yield 1 (N-positions).

Ruler Size (n)	Grundy Number $G(n)$	Position Type	Guaranteed Winner
Odd	0	P-position	Second Player
Even	1	N-position	First Player

Starting at ruler size 9, odd rulers always favor the second player, while even rulers always favor the first player, under perfect play.



Take a picture to download the full GitHub repository

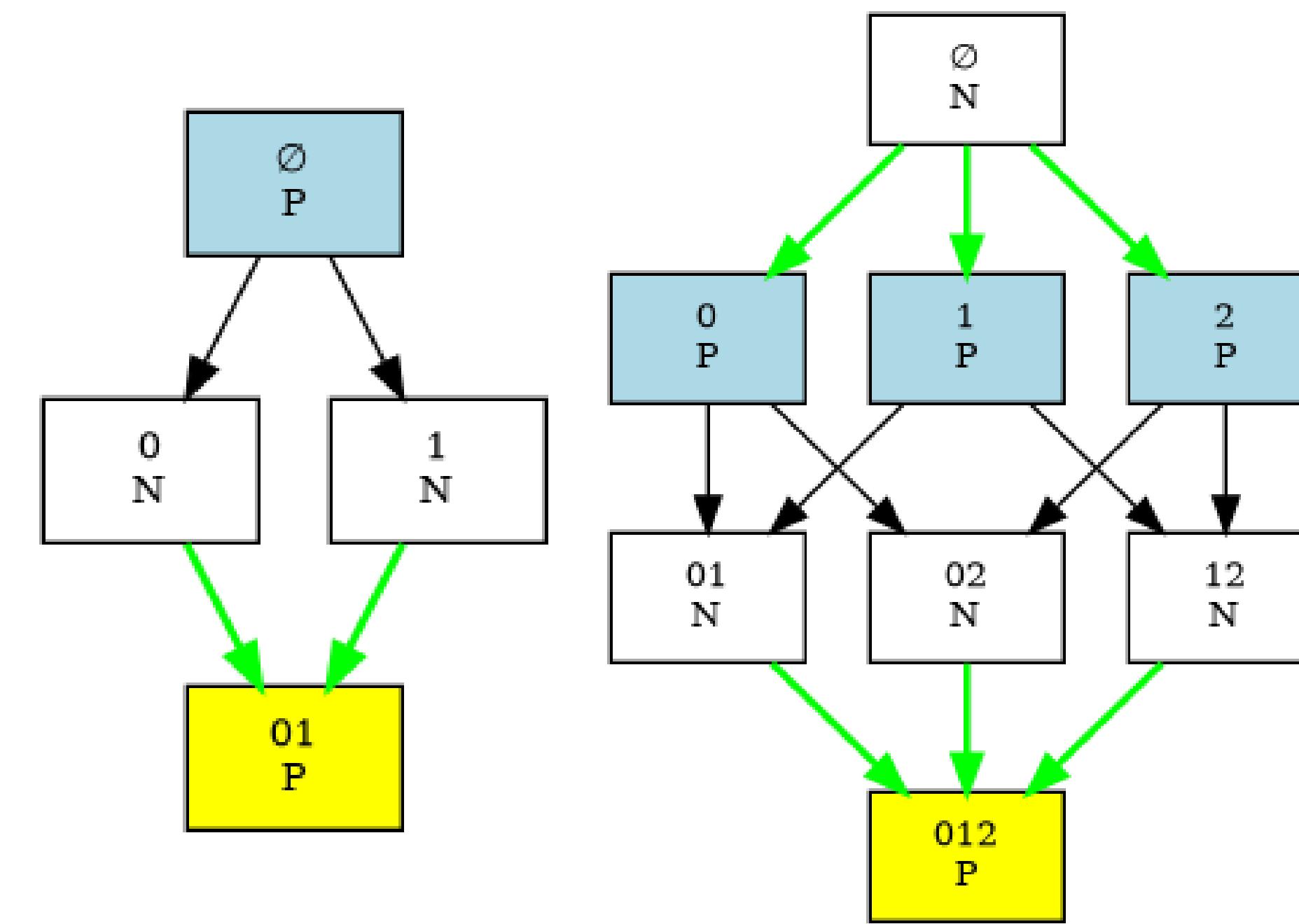


Figure 1: Digitally generated game tree of sparse ruler with size 1. Figure 2: Digitally generated game tree of sparse ruler with size 2.

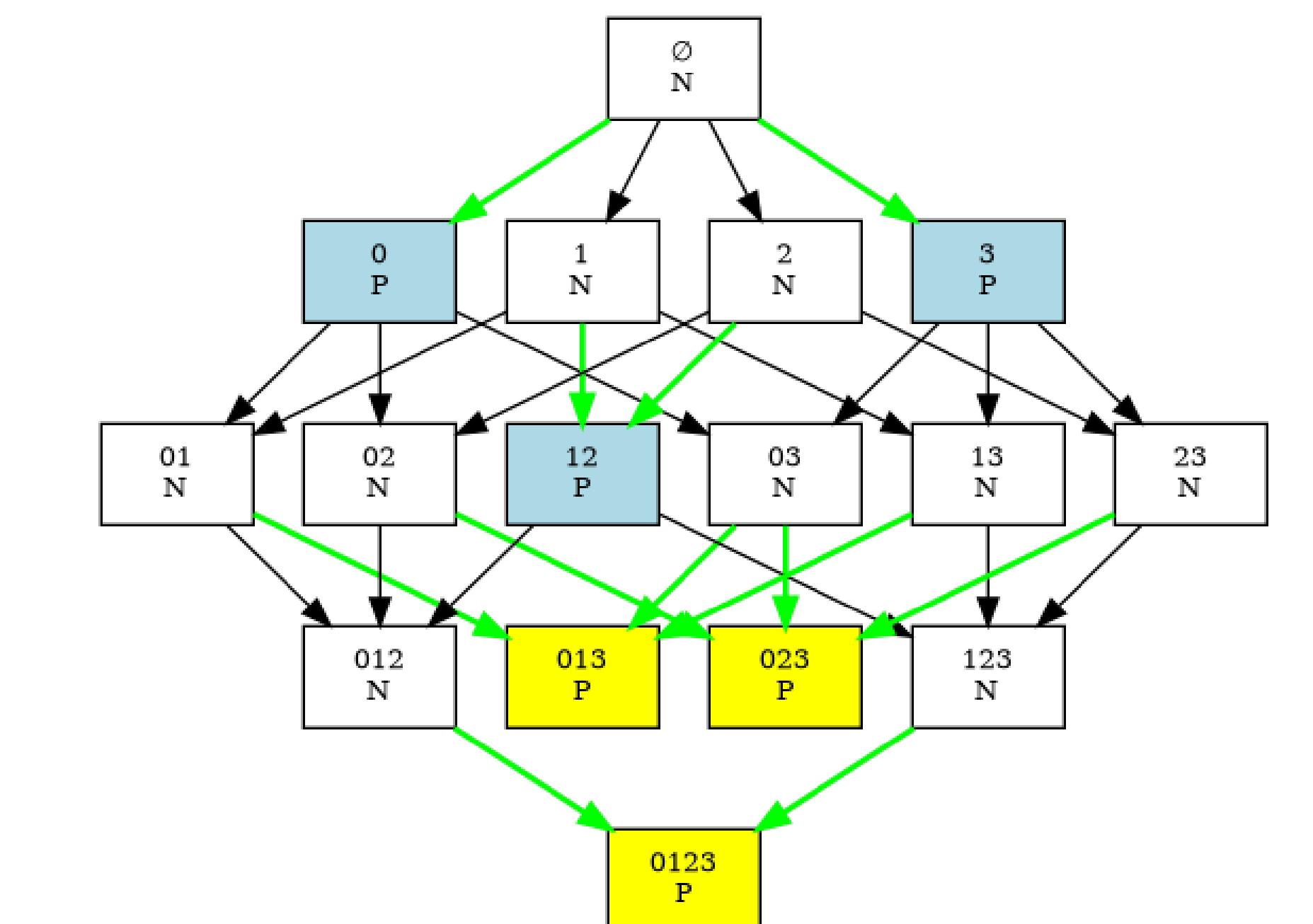


Figure 3: Digitally generated game tree of sparse ruler with size 3

■ Represent the terminal p-position of the game.
■ Blue represents the normal p-position.

Grundy Number General Equation

$$G(P) = \text{mex}\{ G(Q) \mid Q \in \text{Options}(P) \}$$

where

$\text{mex}(S) =$ the smallest non-negative integer not in S

n	1	2	3	4	5	6	7	8	9	10
$G(n)$	0	1	2	0	0	1	2	1	0	1
n	11	12	13	14	15	16	17	18	19	20
$G(n)$	0	1	0	1	0	1	0	1	0	1

Table 1: Computed Grundy number value for ruler size.

■ Advisor: Dr. Bill Shillito*

